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Approximate Reverse Carry Propagate Adder for
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Abstract—1In this paper, a reverse carry propagate adder
(RCPA) is presented. In the RCPA structure, the carry signal
propagates in a counter-flow manner from the most significant
bit to the least significant bit; hence, the carry input signal has
higher significance than the output carry. This method of carry
propagation leads to higher stability in the presence of delay
variations. Three implementations of the reverse carry propagate
full-adder (RCPFA) cell with different delay, power, energy, and
accuracy levels are introduced. The proposed structure may be
combined with an exact (forward) carry adder to form hybrid
adders with tunable levels of accuracy. The design parameters
of the proposed RCPA implementations and some hybrid adders
realized utilizing these structures are studied and compared with
those of the state-of-the-art approximate adders using HSPICE
simulations in a 45-nm CMOS technology. The results indicate
that employing the proposed RCPAs in the hybrid adders may
provide, on average, 27%, 6%, and 31% improvements in
delay, energy, and energy-delay-product while providing higher
levels of accuracy. In addition, the structure is more resilient
to delay variation compared to the conventional approximate
adder. Finally, the efficacy of the proposed RCPAs is investigated
in the discrete cosine transform (DCT) block of the JPEG
compression and finite-impulse response (FIR) filter applications.
The investigation reveals 60% and 39% energy saving in the DCT
of JPEG and FIR filter, respectively, for the proposed RCPAs.

Index Terms— Accuracy, approximate adder, digital signal

processing (DSP), energy efficient, reverse carry propagate
adder (RCPA).

I. INTRODUCTION

HE power consumption reduction and speed improve-

ment are the key goals in the design of digital processing
units, especially the portable systems. Normally, an increase in
the speed is achieved at the cost of more power consumption
for exact processing units. One of the approaches to improve
both the power and speed is to sacrifice the computation
exactness. This approach, which is approximate computing,
may be used for the applications where some errors may
be tolerated [1]. They include the ones where digital signal
processing (DSP) are performed on the human sense-related
signals [2]. Since human perceptual abilities are limited, most
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of the times, the approximate computing may be invoked for
custom DSP blocks which processing these signals [3].

Adder blocks, which are the main components in arithmetic
units of DSP systems, are power hungry and often form
hot-spot locations on the die [4]. These facts have been the
motivations for realizing this component using the approxi-
mate computing approach. Prior researches on approximate
adders have taken two general approaches of focusing on error
weight and error probability reductions (see [S]-[12]). The
first approach is based on a hybrid structure adder where two
different parts, exact MSBs, and approximate least significant
bits (LSBs) are utilized. The error appears in the carry input of
the exact most significant bit (MSB) part and the summation
in the LSB part [5]-[10]. This limits the error weight to the
weight of the carry input of the MSB part. Since normally
most of the activities occur in the LSB part, power reductions
more than 70% may be achieved using the hybrid adder
approach [7]. In the second approach, pure approximate adder
structures are employed. For these adders, reducing the error
probability of the summation as well as reducing the power
and delay are the key design criteria [11]-[14]. They may also
be accompanied by an error correction unit which has time,
power, and area overheads [12], [14].

In this paper, we focus on the hybrid adders where the use of
the approximate reverse carry propagate full-adder (RCPFA) is
suggested. The approximate adder propagates the input carry
in a counter-flow manner, i.e., from the higher significant bit
to lower significant bit to form the carry output. In this type of
adder, which is called reverse carry propagate adder (RCPA),
the propagation is performed by introducing a forecast signal
acting as an output signal. Owing to the reverse propagation,
the weight of the carry decreases as it propagates. This type
of adder improves the delay and energy compared to those of
the state-of-the-art approximate adders. Also, this adder type
is less vulnerable to the delay variation when compared to the
conventional ones.

The rest of this paper is organized as follows. In Section II,
some related works are briefly reviewed. Different realizations
of the proposed RCPFA are described in Section III. The
accuracy of the proposed adder is compared to those of the
state-of-the-art approximate FAs in Section IV. Section V
deals with investigating the design parameters of the suggested
FAs and the effectiveness of their use in an error resilient
application. Finally, this paper is concluded in Section VI.

II. RELATED WORKS

In this section, some of the state-of-the-art approximate
FAs utilized in hybrid adders are reviewed. The ripple carry
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adder (RCA) has the lowest power and area usage among
all the exact adder structures. It, however, suffers from a
large delay. To improve the speed and energy efficiency of
this adder, some prior works have sacrificed the accuracy.
In [5], an approximate RCA structure which was called error-
tolerant adder type I (ETA I) was presented. The structure of
ETA 1 is shown in Fig. 1. In this structure, the input operands
are divided into exact MS and inexact LS parts. In the exact
MS part, the conventional FAs with a zero carry input for
the whole part are used while the inexact LS part includes
a carry-free addition part (consisting of XORs) and a control
block. The control block sets all the result bits to “1” from
the highest bit position on the inexact part where both of the
corresponding bits of the inputs are “1” (point B) to the LSBs
of the inputs. Also, the result bits from the point B to the
joining point are generated by the carry-free addition.

In [6], the full adder of the LS part of the adder has
been replaced by OR gates leading to smaller delay, power
consumption, and area. Also, an AND gate has been employed
to generate the input carry of the MS part. In [7], five approx-
imate mirror adder (AMA) structures having smaller number
of transistors compared to that of the conventional adder have
been proposed. These designs were based on simplifying the
internal structure (removing the transistors) of the mirror adder
leading to smaller area and power consumption as well as
higher speed. The truth tables of AMA-I to AMA-IV are
depicted in Table I. In AMA-V, the sum and carry outputs
are directly connected to the inputs avoiding the use of any
full adder. While this structure is fast and ultralow power, its
accuracy is very low.

Designing basic gates (e.g., XOR and XNOR) based on the
pass transistor (PT) or transmission gate (TG) results in lower
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power consumption [15]. Hence, employing PT or TG for
implementing an exact FA leads to the reduction of the energy
and delay [8]-[10]. In the case of PTs, the output does not
have a full voltage swing, which results in lower dc noise
margin. In [9], similar to the work on the AMA, by simplifying
the internal structure of the TG-based conventional FA, two
types of TG-based approximate (TGA) FAs were proposed.
The truth tables of the TGA type I and type II are also
shown in Table I. Similar to the TGAs, approximate FAs called
approximate XNOR-based adders (AXAs) and inexact adders
based on PT have been proposed in [8] and [10], respectively.
In these structures, lower area and power consumption were
achieved by lowering the number of transistors (the transistor
count becomes fewer than ten [15]). In these structures,
the signal Coy is not restored by the static logic (e.g., static
CMOS inverter), and hence, it is not possible to create a long
chain of FAs required for generating the carry propagation
adders. Here, the case of AXA-I whose truth table is reported
in Table I is an exception. On the other hand, by employing
the static logic, the effectiveness of the proposed approximate
FA is disappeared. It should be mentioned that in [10], only
the effectiveness of a single FA has been studied without
evaluating its efficacy in the RCAs.

III. REVERSE CARRY PROPAGATE ADDER

The conventional FA which is the key building block of the
carry propagate adders has three inputs with the same weight.
Moreover, it has two outputs for a summation result with the
same weight as that of the inputs and a carry output with
twice the weight. The carry propagation delay (fcp) is the
most important timing parameter in an FA due to the fact that
it determines the delay of the critical path of multibit adders
(and multipliers).

In the worst case, the delay of the carry propagation adder
is n x tcp where n is the bit width of the adder. Hence, a clock
period smaller than n X fcp can result in a setup time violation
and hence a potential error. A small short-delay violation may
lead to a large amount of error owing to the fact that the error
occurs on the MSBs of the summation. This is the result of
the generation and propagation of the carry input of the MSBs
through small significant bit FAs. Based on this reasoning,
if the order of the carry propagation is reversed, one may
expect that the amount of error due to the timing violation
decreases. This has inspired us with conceiving approximate
FAs in which the carry propagation takes place in the reverse
order (counter-flow direction). We describe the approximate
RCPFA proposed in this paper.

A. Proposed Reverse Carry Propagate Full-Adder Cell
Each exact FA generates its carry output and sum signals
using
2Cip1 +Si=A;+ B + C; (1)

where A; (B;) is the ith bit of the input A (B), C; (Cj+1) is the
carry input (output), and S; is the ith bit of the sum. Based on
this equation, the output signals in the ith bit position depends
on the ith bits of the inputs A and B and the carry output of
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Fig. 2. (a) Block diagram of the RCPFA. (b) n-bit RCPA.

the previous position (C;). By moving the term C;(Cj+1) to
the left (right) side of the equation, one may write

Si—Ci=A;+ B —2Ci41. 2)

Considering (2), one may think of a full adder as a structure
which operation depends on the carry output of the (i + 1)st bit
position (C;4+1) and its input operand bits. For this structure,
the outputs are the sum and the carry signals with the same
weights. Notice that the carry input of the ith bit position
(Ci+1), should be generated by the FA in the (i + 1)st bit
position. Based on the input bits, the exact output range for
S; — C; is from the set {-2, —1, 0, 1, 2}. On the other hand,
based on the weights of the output signals, the output range
can be only from the set {—1, 0, 1}, which makes the output
inexact. More specifically, the output becomes imprecise when
the right side of (2) becomes —2 or 2. In addition, when the
right side of (2) becomes 0, either of (0,0) and (1,1) may be
considered for (S;, C;). One of the ways to select between
these two solutions is to use an auxiliary signal created by
using the inputs of the (i — 1)st bit position.

Based on the above discussion, we suggest a family of full
adders for the RCPFA shown in Fig. 2. As shown in Fig. 2,
these full adders have four inputs and three outputs. The
inputs are the input operands (A; and B;), the carry output
of the next bit position (C;+1), and a forecast signal (F;). The
RCPFA determines the summation result (5;), carry (C;), and
the forecast signal (F;4+1) as its output signals. Signal F; is
employed to select one of the two pairs when the right-hand
side of (2) is zero. Fig. 2(b) indicates an n-bit RCPA. In this
structure, the most significant carry input (Cp) is assumed to
be equal to output F of the most significant RCPFA. This
may introduce some inaccuracies in the suggested approximate
adder. Also, since there is no previous stage for generating F
for the Oth stage, the carry input of the n-bit adder (Cp) is used
as F of the LSB full-adder. The critical path for this adder is
also shown in Fig. 2(b).

In addition to the intrinsic error of the RCPA, similar to the
conventional RCA, an incomplete carry propagation causes
some error. As mentioned before, the advantage of the RCPA
is that the value of the error is in the direction of decrease

CinF; CinF;
Si 100 01 11 10 Ci|00 01 11 10
00f0 1 0 0 0010 1 /B 1

FOL| T (1,0 0 FO01[ 0 01 1

<11|d a1 o <11|0 01/ 0
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Fig. 3. Karnaugh maps for signals S; and C; of the general form of RCPFA.

in the bit significance. This means that the cumulative impact
of the error (e.g., due to the delay variation) during the carry
propagation is lower for bits with higher significances.

B. Internal Structure of RCPFA

To determine a structure for RCPFA, the Karnaugh maps
of the summation result (S;) and carry (C;) were drawn based
on (2) and considering the forecast signal as an input (Fig. 3).
The Boolean relations between inputs for generating S; and C;
are obtained as

Si =CipiFi +Ci1Ai +Ciy1Bi + A; B F; (3)
Ci=CinFi+Ci1Ai +Ciy1Bi + A;Bi F;. )

An optimized gate-level structure for implementing RCPFA
may be achieved by simplifying (3) and (4) as

S; = Fi(Cit1 + AiB)+ Cip1(Ai + B)=FX; +Yi (5
Ci = Fi(Ciy1(Ai + B))) + (Cit1 + AiB)) = F;Y; + X;. (6)

In this adder structure, the accuracy and performance of
RCPFA depend on the signal F whose generation leads to
some overheads. This means that optimizing the generation of
the forecast signal may simplify (optimize) the general form of
the RCPFA structure. In this paper, three different generation
mechanisms for signal F' are presented. The truth table and the
optimized gate-level structures of these RCPFAs are provided
in Fig. 4. In the first RCPFA type (RCPFA-I), which is the
general form obtained from (5) and (6), one of the input
operands, e.g., A; is considered as the output F. In the second
type (RCPFA-II), the signal F is the carry generate signal
(A; AND B;), while in the third type (RCPFA-III), the
signal F is the carry alive signal (A; OR B;). By choosing
the carry alive signal as signal F, some states of the truth
table that X; = 1 does not happen. Hence, by replacing X;
by zero, the general structure can be simplified. This is shown
in Fig. 4(e). [Gates 1, 2, 4, and 9 of Fig. 4(d) are omitted.]
Similarly, by choosing the generate signal as the forecast
signal, Y; can be replaced by 1 and the general structure can be
implemented as Fig. 4(f). [Gates 6, 7, 5, and 8 of Fig. 4(d) are
eliminated.] RCPFA-I has 26 transistors which is smaller than
the transistor count for the conventional FA. By simplifying
the general structure, both RCPFA-II and RCPFA-III consist
of 16 transistors, which have 10 transistors less than that of
RCPFA-I while four transistors are employed to generate the
forecast signal (gate 10).

It should be mentioned that the presented structures can
be implemented by PT and TG in the same way as was
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Fig. 4. Truth tables of (a) RCPFA-I, (b) RCPFA-II, and (c) RCPFA-III, and the internal structures of the (d) RCPFA-I, (e) RCPFA-II, and (f) RCPFA-IIIL

employed in [9] and [10]. This leads to fewer transistor counts.
In this paper, to achieve highest reliability and speed, we use
standard CMOS gates for implementing RCPFAs. Therefore,
the combinational gates like AND—OR-Invert (AOI21) and
OR—AND-Invert (OAI21) are utilized, which consist of six
transistors. The conventional mirror FA has two (eight) more
transistors compared to that (those) of RCPFA-I (RCPFA-II
and RCPFA-II).

IV. ERROR ANALYSIS

In this section, the accuracies of the proposed RCPFAs are
studied. First, mean (u) error, mean error distance (MED),

of 1 determines the mean error in each bit position. Hence,
the mean error is defined as

n—1
p=2 [Plei=1)=Plei=—1)]x2

i=0

®)

where e; is the error in the ith bit in the case of approximate
adder and P() is the corresponding signal probability. As men-
tioned in Section III, the error occurs when the right side of (2)
becomes 2 or —2. Some other error conditions existed in the
truth tables of RCPFA-II and RCPFA-III (items 4, 5, 7, and 8)
while they were not happened in the chain of adders. One may
use (2) to obtain the mean error as

and variance (02) of the error for the proposed RCPFA are n—1
analytically expressed. Then, accuracies of the approximate n = Z[P(C,-+1 =0/(A; =1NB;=1))
adders realized using the proposed RCPFAs are compared with i=0

those of other approximate adders. The accuracy metrics which
are considered include the mean and variance of the error,
error rate (ER), maximum error distance (max ED), MED, and
finally, normalized MED [16], [17]. However, mean relative
error distance (MRED) is the other error metric to evaluate the
accuracy of an approximate adder. This metric is expressed as

. 22
7 2

i=1

ED;
Si

MRED = (7)

where S; and ED; are the exact result and the error distance
for the ith input set, respectively.

A. Analytical Expressions for the Mean Error, MED,

xP(Ai=1NB;=1)
—P(Ciy1 =1[(A; =0N B; =0))

xP(A; =0N B; =0)] x 2. ©)

It should be noted that since the output carry is generated
using F,,, the conditional probabilities for the MSB position
are zero. Assuming an input bit probabilities of 0.5, it can be
proved [18] that P(A; = 1NB; =1) = (1/4) and P(A; = 0N
B; = 0) = (1/4). Therefore, in the same way, the conditional
probabilities of the proposed RCPFAs are obtained as follows.

1) RCPFEA-I

Ci = Fi(Ciz1(A; + B)) + (Cip1 + (A By))
P(Cit1 =0[(A; =1NB; =1))

and Variance of Error _ l _ L
The mean error is one of the important parameters that 3 3x4r!
capture the impact of the error on the functional correctness P(Cit1 = 1|(A; = 0N B; =0))
of the applications. The error in each bit is —1,0, or 1. _ 1 _ Y i€f0,1 n—2} (10)
The difference between the probabilities of —1 and probability 3 3 x4l T .
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2) RCPFA-II
Ci = Fi(Ciy1(A; + By))
P(Cit1 =0[(A; =1NB; =1))

2 2 x 41
T3 3x4nl
P(Ciy1 = 11(A; =0N B; =0))
=0 ic{0.1,....n—2) (11)
3) RCPFA-III
Ci = Fi + (Ciy1 + (AiB))
P(Ci+1 =0[(A; =1NB; =1))=0
P(Cit1 =1|(A; =0NB; =0))
2 ax4l
=S5 (€L n-2 (2

To obtain analytical expressions for the mean errors, the
following theorems may be utilized.

Theorem 1: If P(Ci+1 =0|(A4; = 1N B = 1) =
a—a@ /4" and P(Ciy1 =1|(A; = 0N B; = 0)) =
b — b(4'/4"1), then the mean error may be approximated
by

_(a=b)3x2""1 (a—b)

2 7 4

Proof: Substituting the conditional probabilities of the
proposed RCPFAs in (4) yields

(13)

n—2 : .
4! 1 4 1 ;
:uzz (a—am)XZ—(b—bm)Xz}le
i=0 -
n—2 - i
4! 1 :
:Z ((a—b)—(a—b)ﬁ)XZ}X2l
i=0 -
n—2 n—2 i
1 : 4! 1 )
n = (a—b)XZ:|X21—Z|:(Cl—b)4n—1XZi|X21.
i=0 - i=0
Also, using Z:’;Ol x! = (1 —x"/1 —x), one attains the
mean error as
(@a—=>b), .1 (a—b)81—1
=—02"" -1 - —_—
a al ) 4 7 x4n
L (@=b3x2"1  (a—b)
=" 7 4

|

By replacing the parameters a and b by their corresponding

values in (10)—(12), the mean error for each type of the
proposed adder are obtained as

1) prcpra-1 =0

=l
2 = -
) HRCPFA—II 7 5
P |
3) urCPRA-IT = — 5 + 6 (14)

Another parameter of importance in accuracy evaluation is
MED. The MED is defined as [16]
n—1
MED = " [ED;| x P(ED;)
i=0
where ED; is the error distance in the ith bit position.

15)

Theorgm 2: If P(Ci+1=0/(A; = 1NnB = 1) =
a—a@ /4" and P(Ciy1 =1(A; = 0N B; = 0) =
b — b(4' /4"~ 1), then the MED is given by

MED:(a+b)3x2n_1 _(a+b)
) 7 4

Employing this theorem, the MED for the proposed adders
may be obtained from

(16)

P |
1) MED = [
) RCPFA—I 7 g
=l
2) MED = - —
) RCPFA—II 7 g
=l
3) MEDrcpra—m = — % (17)

In addition to the mean error and MED, the variance of
the error is another important accuracy parameter. It should
be noted that to simplify the extraction of the error metrics,
we assumed the error occurs in FAs independently. It means
that the concurrent occurrence of error in two or more FAs
was not considered. By employing this assumption, the general
expression of variance [19] may be simplified as

n—1
o? = ) ED; x P(ED;) — u*.
i=0

(18)

We use the following theorem to obtain the expressions for
the error variance.

Theorem 3: If P(Ci+1 =0|(A; = 1N B = 1) =
a—a@ /4" and P(Ciy1 =1|/(A; = 0N B; = 0)) =
b — b(4' /4" 1), then the variance can be determined from

JERS (a + b)22"2 a+b) o,
= 15 M

Based on this theorem, the variance of each type of the
proposed adder are found as

19)

22n—1
1) odcpra_t =
- 45
2n—1 2n—2
2) odcpran = G
~ 45 49
2n—1 2n—2
4) odcppa_mm = =2 (20)
~ 45 49

Note that the proofs for the Theorems 2 and 3 are straight-
forward and similar to that of Theorem 1 and not given here
for the sake of the space.

B. Accuracy Comparison

The results for the accuracy metrics for an 8-bit approximate
RCAs realized by different approximate FAs have been pre-
sented in Table II. The adders include RCPFAs, ETA-I, AMA-I
to AMA-IV, TGAs, AXA-I, and LOA. For extracting the
accuracy metrics, all the input combinations are injected to the
adders to find the errors. The lowest ER, MED, max ED, and ¢
belong to the RCPFA-II while RCPFA-III has the minimum
MRED value. Also, the mean error of RCPFA-I is zero. It is
worth mentioning that in many application domains like image
processing, the impact of the mean error on the quality of the
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TABLE 11
ERROR EVALUATION METRICS OF DIFFERENT APPROXIMATE ADDERS

ER % MED | MRED |Max ED il c

RCPFA 1 75.95 18.20 | 0.4439 128 -0.33 31.98
RCPFA II 65.99 18.12 | 0.4763 127 18.12 26.57
RCPFA III 80.08 18.79 | 0.4392 128 -18.79 | 26.58
ETAI 89.99 51.18 | 0.8384 255 51.18 57.11
AMA 1 85.91 34.57 | 0.9429 255 0 60.36
AMA 11 89.99 59.69 1.1235 255 -2.00 85.31
AMA 111 97.56 71.31 1.5805 255 -1.00 94.03
AMA IV 97.56 66.29 | 3.8755 255 31.75 82.62
TGA1 89.99 44.79 | 2.5951 170 -0.25 64.00
TGA II 85.91 3225 | 0.7780 170 -32.25 | 45.25

AXA-I 96.66 255.5 [12.0102 510 255.5 128
LOA 89.64 47.69 | 0.7910 128 -0.249 | 63.88

TABLE III

PERCENTAGES OF OUTPUTS WITH RED VALUES SMALLER THAN
A SPECIFIED VALUE FOR 8-BIT APPROXIMATE RCA REALIZED
USING DIFFERENT APPROXIMATE FAs

<0.02 | <0.05 | <0.1 <0.5 <1 <2 <5 <10

RCPFAT |36.0% | 45.6% | 53.7% | 73.1% | 74.8% [96.5%99.5% |99.9%
RCPFA I [40.7% | 47.9% |55.2% | 73.0% | 75.2% |95.5% [99.4% |99.8%
RCPFAIII | 31.4% | 42.8% | 51.8% | 71.6% | 74.1% |97.2% (99.6% (99.9%
ETAT |13.3% | 18.2% |24.0% | 50.3% | 60.0% [93.0% 98.5% |99.6%

AMAT [29.2% | 38.5% | 45.6% | 64.2% | 73.1% |86.1% [97.0% |99.0%

AMATL [12.9% [ 16.9% |21.8% | 43.1% | 70.0% |90.2% [96.9% [99.0%
AMATI | 5.1% | 8.6% |[12.9% | 35.1% | 56.5% |74.9%95.0% |98.5%
AMAIV | 7.1% | 12.5% | 18.8% | 44.5% | 57.8% (72.1%|87.0% |93.2%
TGAT [16.1% [23.3% [31.1% | 59.7% | 66.6% |76.9%]90.2% [95.0%

TGA I |30.1% | 39.0% | 46.4% | 66.3% | 73.2% [86.1%|98.3% [99.7%

AXAT [3.81% | 5.08% |6.64% | 14.9% | 24.8% [36.1%|55.9%|76.7%

LOA 12.4% [16.24% [ 20.7% | 43.0% | 72.0% [93.7%]99.1% 99.7%

output is much more significant than other characteristics of
the error.

Also, to compare the accuracy of the full adders, the per-
centages of the outputs with a relative error distance (RED)
smaller than a specified value are presented in Table III.
As the figures in the table indicate, for all the specified values,
the RCPFAs lead to larger values implying higher accuracies
for the proposed approximate FAs.

Furthermore, the MRED and MED of 8-, 12-, 16-, 20- and
24-bit approximate adders are compared in Fig. 5. For Fig. 5,
only the MRED and MED of the approximate adders with
the lowest value in each type of the approximate adders are
presented. Also, the MED values [Fig. 5(b)] are normalized to
2" where n is the bit length of the adder. As the results show,
for all the bit lengths, the lowest MRED and MED belong to
RCPFA-II.

As mentioned before, the weight of the carry decreases as
the carry propagates in a counter-flow manner. This prop-
erty helps having less vulnerability to the delay variation
(due to process and supply voltage variations) impact for this
adder compared to other proposed approximate FAs. This is
especially advantageous in the case of hybrid adders with
large sizes for the approximate part which determines the
critical path of the adder. This may be illustrated by studying
the impact of reducing the clock period on, e.g., MRED
of the approximate adders. These results have been plotted
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Fig. 5. (a) MRED and (b) normalized MED of the approximate adders for
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Fig. 6.  Effect of reducing clock period on increasing (a) MRED and
(b) MRED changes of 8-bit RCA realized using different FAs.

in Fig. 6(a). Since TGAs, AMA-IV, AXA-I, LOA, and ETA-I
FAs do not propagate the carry signal conventionally, their
critical paths are not determined by carry propagation delay
chain. Hence, their results have not been shown in Fig. 6(a).
As the results show, by reducing the clock period, the MRED
of the RCAs realized using RCPFA-II and RCPFA-III are
almost constant while in the case of the RCPFA-I, the MRED
increases considerably as the clock period becomes smaller
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Fig. 7. MRED versus inexact/truncated part width of approximate and
truncated adders.

than half of the critical path delay. Note that for all the
clock periods considered in this paper, the proposed RCPFAs
provide the highest accuracy. Interestingly, by shortening the
clock period to 78% of the critical path delay, MRED of the
RCA realized by the exact FA becomes larger than those of
the RCPFAs. For a better understanding of the sensitivity of
MRED to the clock period reduction, we have plotted the
change in the value (AMRED) of this parameter versus the
clock period for the adders. It indicates the impact of the unfin-
ished carry propagation in the accuracy deterioration. The
lowest variation belongs to the proposed adders in this paper.
The impact for the RCA and AMA-II are almost similar owing
to the fact that the output carry of AMA-II is also exact
(see Table I).

A type of conventional approximate computing method is
bit truncation. For employing this approach in DSP applica-
tions, choosing the effective bit length is a key challenge.
By comparing the output quality of the hybrid approximate
adders with that of the truncated adders, the effectiveness of
the hybrid adders can be assessed. Hence, for determining
the effective number of bits for the proposed and studied
approximate adders, we simulated a 16-bit hybrid adder with
3 to 12 bit as its inexact part width. Also, we simulated a
16-bit adder while truncating its 3 to 12 LSBs. The MRED
values of the simulated adders are shown in Fig. 7 where
the truncated adder is denoted by TRC. The MRED of the
proposed approximate adders (RCPAs) with the 8-bit inexact
part width (MRED = 0.005) is equal to that of the 4-bit
truncation showing a 4-bit effective bit length. In addition,
the results show 3.5-bit (3.25 bit) effective bit length for
AMA-1 and TGA-2 (ETA-1 and LOA).

V. RESULTS AND DISCUSSION

In this section, first, the design parameters of the proposed
RCPFAs as well as those of the hybrid adders realized
using these RCPFAs are studied. This paper is performed
using the Synopsys HSPICE tool based on a 45-nm NanGate
technology [20]. For all the simulations, the supply voltage
and temperature were 1 V and 25 °C, respectively. To have a
sense about the technology parameters, the energy (delay) of
an inverter was simulated for the cases of FO1 and FO4 where
the values were 0.64 fJ (22.7 ps) and 1.71 fJ (42.3 ps),
respectively. Next, the efficacies of the proposed RCPFAs

7
TABLE IV
POWER, ENERGY, DELAY, AREA, AND NUMBER OF
TRANSISTORS OF THE EXACT FA AND RCPFAs
Psiatic |Epynamic| Tep | Tes | Tr Area #of
(nW) (f) (ps) | (ps) | (ps) (um?) | Transistors
Exact FA | 4.375 4272 | 164 | 246 | NaN | 7.224 28
RCPFATI | 5.521 4.092 | 171 | 189 | 0 6.846 26
RCPFAII | 1.948 1.284 | 101 | 74 | 30 5.705 20
RCPFA Il | 3.542 1.896 | 116 | 98 | 48 5.705 20
Joining Approximate Part
BI.ljl:..l ik T P'Im B A By Ap
Fy | Fy Co
& Ca Cs — S — —
—PEAN - —AN—{c. [REPEAl c. -+ c, |RCPFA|
] 1, I l Critical Path |
sl Sy Sp1 S,

Fig. 8. General n-bit hybrid adder with k-bit RCPA part.

in two error-resilient applications of digital filter and image
compression are assessed.

A. Design Parameters of RCPFAs and Hybrid
Adders Based on RCPFAs

First, the parameters of the proposed RCPFAs are com-
pared to those of the exact FA. The parameters, which are
given in Table IV, include the carry propagation delay (Tcp),
carry to summation delay (7cs), forecasted signal delay (7F),
number of transistors, dynamic energy (Epynamic), and static
power (Psaiic). The power and energy have been extracted
by applying all input combinations. Psatic, EDynamics fCP» ICS,
and the transistor count of the RCPFA-II (RCPFA-III) are 55%
(19%), 70% (56%), 38% (29%), 70% (60%), and 29% (29%),
respectively, smaller than the those of the exact FA. The
RCPFA-I has the lowest Tr among RCPFAs while only its
Epynamic and Tcs are smaller than those of the exact FA. Note
that although all the design parameters of RCPFA-I are not
good as those of RCPFA-IT and RCPFA-III, its zero mean error
makes it more attractive for signal processing applications.

The proposed RCPFAs may be used in hybrid adders whose
general n-bit structure based on the RCPFAs is depicted
in Fig. 8. Obviously, the design parameters of the adder depend
on the width of the approximate part. The delay, power at
maximum frequency, energy, and energy-delay product (EDP)
of the 32-bit hybrid adder realized using RCPFAs for different
widths of the approximate part are drawn in Fig. 9. When
the width of the approximate part (k) is small (<16), using
RCPFA-I leads to the smallest delay due to the small 7r. While
for the other approximate part widths, RCPFA-II provides the
smallest delay. In the cases of the power, energy, and EDP, for
all the approximate part widths, utilizing RCPFA-II (RCPFA-I)
results in the smallest (largest) value.

As shown in Fig. 9, the carry is predicted (using Fy signal)
in the joining point of the two parts and is propagated to
the MSBs in the exact part and to the LSBs in approximate
part. Therefore, the critical path starts from the joining point.
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TABLE V

NORMALIZED DELAY, POWER, ENERGY, EDP, AREA, AND FOC OF
HYBRID ADDERS REALIZED DIFFERENT APPROXIMATE FAs

Delay | Power | Energy EDP Area FoC

RCPFAT | 0.508 1.802 0.915 0.465 0.964 0.198
RCPFAII | 0.514 1.269 0.652 0.335 0.857 0.131
RCPFA III | 0.517 1.391 0.719 0.372 0.857 0.145
ETA1 0.508 1.318 0.669 0.340 1.098 0.320
AMA 1 0.948 | 0.875 0.829 0.786 0.857 0.702
AMATIL | 0976 | 0.851 0.831 0.811 0.786 0.720
AMAIII | 0.941 0.812 0.764 0.719 0.7321 0.876
AMA IV | 0.523 1.461 0.764 0.399 0.768 2.476
TGA1 0.508 1.310 0.665 0.338 0.786 4.167
TGA II 0.520 1.507 0.783 0.407 0.892 0.305
AXA-I 0.607 | 2.186 1.327 0.805 0.688 11.913
LOA 0.523 1.199 0.627 0.328 0.623 0.161

Depending on the length of each part and the carry prop-
agation delay of each FA, either the critical path of exact
part or that of the approximate part would be dominant.
As shown in Fig. 9(a), for small approximate parts, the critical
path of the exact part will be dominant while when the
approximate part is larger, the critical path of the approximate
part will be prevailing. For example, when the exact part is
dominant (small ks), increasing k causes decrease in the exact
part width (the critical path delay). When k becomes larger
than a certain value, the approximate part delay becomes
dominant where increasing k, causes the critical path delay
enlargement.

The delay, power at maximum frequency, energy, EDP, area,
and a figure of cost (FoC) for the 32-bit hybrid adders realized
using different approximate FAs are compared in Table V. The
energy and power were obtained by HSPICE simulation under
10 000 random inputs with uniform distribution at 100 MHz
and maximum possible frequency, respectively. The width
of the approximate part adder was 16 bits. In Table V, the
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design parameters are normalized to the corresponding design
parameters of a 32-bit RCA realized based on an exact FA.
Note that the energy, delay, and transistor count of 32-bit
RCA are 136.7 ], 5.3 ns, and 896, respectively. The FoC
is defined by

FoC = energy,,;m * delay, ., X areanom. X MRED  (21)

where MRED is the mean relative error distance. Obviously,
the lower is the value of FoC, the better the approximate
adder would be (considering the design parameters). As the
results demonstrate, LOA leads to the lowest energy and
EDP, while the energy and EDP of RCPFA-II are just 2.5%
and 0.7% higher than those of LOA, respectively. Also, due
to the better quality of RCPFAs, one can conclude that for
the similar output quality, more energy savings compared to
LOA and other studied adders are obtained when the proposed
approximate FAs are employed.

AMA-III provides the smallest power consumption. Note
that based on the reported power consumption in Fig. 9(b),
when the width of the approximate part is 16, the hybrid
adder realized using RCPFA-II or RCPFA-III consumes a
considerably large power. Among the studied approximate
adders, RCPFA-I, ETA-I, and TGA-I lead to the smaller
delays. It should be mentioned that the higher speeds of TGA-I
and ETA-I have been achieved at the cost of larger accuracy
loss compared to that of RCPFA-II. Among the approximate
FAs, RCPFA-II leads to the smallest FoC while the FoC of the
RCPFA-III is smaller than those of the other approximate FAs.
The FoC of the approximate adder realized using RCPFA-II
(RCPFA-III) is, on average, 65% (61%) smaller than that
of the approximate adders realized approximate FAs from
other structures. Finally, the smallest area belongs to the RCA
realized LOA whose area is about 27% smaller than those of
RCA realized RCPFA-II and RCPFA-III.

The EDP and FoC of the 32-bit approximate adders for
different approximate part widths are drawn in Fig. 10. Note
that the values are normalized to the corresponding values in
the case of using the exact FA. As is expected, by increasing
the size of the approximate part, both EDP and FoC decrease.
For all the cases, RCPFA-II leads to the lowest EDP and FoC.

B. Filter Design With Approximate Adders

The finite-impulse response (FIR) filter is a traditional DSP
block that may be used in several signal processing systems.
To design an FIR filter, first the poles and zeros are determined
and the coefficients are calculated subsequently [22]. The
quantization of the coefficients changes the places of poles
and zeros which requires modifying the design. Considering
the quantization noise, the bit length of the data path deter-
mines the desired signal-to-noise ratio (SNR). Also, to avoid
saturation in the adders and multipliers due to computation
gain, scaling should be applied [22].

In this paper to evaluate the proposed FAs, a low-pass
FIR filter was designed for a sampling rate of 48 KS/s. The
passband ripple and stopband rejection were 0.5 and 54 dB,
respectively. The passband and the stopband edge frequencies
were 10 and 11 KHz, respectively. Therefore, a 41-tap filter
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was designed with a linear phase FIR filter structure and all the
adders and multipliers had the width of 16 bit. A linear phase is
a type of FIR filter which has symmetrical coefficients. In this
structure, the coefficients are multiplied after the first step
addition. The adders may be categorized into two groups: those
before the multiplication and the ones after the multiplication.
Note that due to the quantization noise, the SNR of the output
of the filter was determined to be 87.5 dBfs (dB related to
full scale).

Multipliers are the most power hungry parts of the FIR filter
whose delay is also determined by their delays. A multiplier
can be implemented with add and shift. Add and shift is a
suitable structure when one of the multiplication operands
is constant [23]. This is the case for the FIR filter that the
coefficients are multiplied by the input signal. It is worth
mentioning that the number of additions in the multiplier is the
same as the number of ones in the constant operand. Hence, in
this paper, the add operation was employed for implementing
the multipliers.

To evaluate the performances of the approximate adders,
they were used in realizing the filter. The delay, power, energy,
EDP, and area of the FIR filters for the same output quality are
reported in Table VI. Based on the average energy of adders
that has been achieved from the simulations, the energy of
FIR was estimated by considering the number of adders and
summing up their energy consumptions. Here, their types, total
bit width and the width of the inexact part of the approximate
adders were considered. In Table VI, all the values were
normalized to the corresponding values in the case of using
the exact FA. The width of the approximate part for the
first step (Wapx,1), second-step (Wapx 2) of the adders and
multipliers (Wapx,MuL) were determined based on achieving
the desired SNR (which was SNR = 62 dBfs) with the

TABLE VI

NORMALIZED DELAY, POWER, ENERGY, EDP, AND AREA FOR THE FIR
FILTER REALIZED USING HYBRID ADDERS FOR SNR = 62 dBfs

SNR | Delay | Power [ Energy | EDP | Area (Warxr Warxz,
WAPXMULT]
RCPFAT | 61.7dBfs| 0.697 | 1.350 [ 0.926 | 0.656| 0.969 [9,5,7]
RCPFATI | 62.1dBfs| 0.701 | 0.811 | 0.696 | 0.399 | 0.875 [9,5,7]
RCPFA 1III | 62.2dBfs| 0.702 | 0.990 | 0.755 | 0.488 | 0.875 [9,5,7]
ETAT |[61.8dBfs| 0.758 | 0.976 | 0.753 | 0.558| 1.070 [8,4,8]
AMAT |63.4dBfs| 0.975 | 0.840 | 0.855 | 0.798 0.878 [8,4,6]
AMATI | 61.5dBfs| 0.988 | 0.832 | 0.874 | 0.812 | 0.840 [8.,4,6]
AMATII | 61.5dBfs| 0.985 | 0.775 | 0.829 [0.752| 0.818 [8,2,6]
AMA TV | 61.8dBfs| 0.758 | 0.966 | 0.853 |0.647 | 0.855 [7,3,5]
TGAT |62.8dBfs| 0.882 | 0.817 | 0.795 | 0.635| 0.869 [7,2,5]
TGA Tl | 62.3dBfs| 0.697 | 1.130 | 0.836 | 0.697]0.919 [8.5.6]
AXA-1 | 62.2dBfs| 0.855 | 1.318 | 1.123 |0.963 | 0.866 [3.3.3]
LOA 63.2dBfs| 0.895 | 0.857 | 0.767 [0.686 | 0.759 [7.2,5]
Truncation | 62.8dBfs)| 0.9375] 0.867 | 0.813 | 0.762 0.813 [5,1,3]
45
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Fig. 11. Energy saving in the FIR filter for achieving SNR values of 70, 62,

and 54 dBfs.

lowest EDP. It is clear that to reach this output quality,
the widths of the approximate part may different for different
approximate FAs. Therefore, the tuples in the last column of
Table VI are different. The lowest energy and the highest
accuracy of RCPFA-II provided a significantly higher energy
saving than those of the others. The lowest delay belongs to
RCPFA-I and TGA-II while LOA has the smallest area usage.

Next, the energy savings that achieved by employing differ-
ent approximate FAs for three different desired output qualities
are shown in Fig. 11. As is shown in Fig. 11, for RCPFA-II,
an energy saving of 26% (39%) was achieved at the cost
of 17 dBfs (33 dBfs) SNR loss compared to the case of
the exact FIR filter (SNR = 87.5 dBfs). This energy saving
was 7% more than that of the LOA case due to the larger
approximate part while LOA has the lowest energy consump-
tion compared to those of the other adders for the same widths
of the approximate part (see Table V).

C. Image Compression With Approximate Adders

Multimedia systems are one of the most popular human
sense-related DSP processing systems that may be imple-
mented with approximate computing techniques. Discrete
cosine transform (DCT) is a DSP block that is commonly
used in multimedia systems. More specifically, they are used in
voice, image and video compression algorithms such as MP3,
JPEG, MPEG-1, MPEG-2, H.264, and H.265 [3]. DCT, which
does not generate imaginary part in transforming function, has
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an intrinsic energy compaction of the signal power [22]. This
characteristic makes DCT suitable for the signal compression.

Now, to evaluate the effectiveness of the proposed RCPFAs
in a DSP application, the DCT of JPEG was implemented
using RCPFAs. For this paper, we utilized the JPEG bench-
mark of MediaBench-II package [24] where the adders and
multipliers for its DCT were replaced with a C language model
of the RCPFAs. Also, similar to FIR filter, the multipliers
were modeled with the add and shift approach. In the JPEG
compression algorithm, a 2-D DCT with an 8 x 8 input matrix
realized by eight 1-D DCTs was used. A 1-D DCT imple-
mented in three stages is depicted in Fig. 12. In this structure,
passing the input data from each stage without scaling, causes
their values become larger. Hence, in this paper, we considered
32-bit hybrid adders for the implementation of the DCT where
the widths of the approximate parts of the adders in each stage
were the same while different from those of the other stages.
These widths are denoted by Wapx,1, Wapx,2, and Wapx 3,
respectively. Also, the widths of the approximate part of the
hybrid adders utilized in the multipliers, in all stages, were
equal to Wapx muL. Finally, each input of the DCT [x(0)x(7)
of Fig. 12] had a length of 32 bit.

Table VII contains the minimum, average, and maxi-
mum mean of structural similarity (MSSIM) [25] of the
six benchmark images (i.e., Lena, Airplane-F16, Peppers,
Splash, Tiffany, Sailboat on lake) when compressed by the
JPEG algorithm. In this paper, the adders and multipliers
of the DCT were implemented by the exact FA, RCPFAs,
ETA-I, AMAs, TGAs, LOA, and truncation. In addition to
these implementations, we considered the hybrid adder whose
approximate part was a combination of the RCPFA-II and
RCPFA-III denoted by RCPFA-II and RCPFA-III in Table VII.
In this implementation, in the chain of the FAs in the approx-
imate part, between each two RCPFA-II, one RCPFA-III was
included. This structure helped canceling negative and positive
mean errors of RCPFA-II and RCPFA-III leading to an almost
zero mean error. Beside different FAs, three configurations
with different widths in the approximate part of the hybrid
adders for the DCT were considered. The first column of
Table VII indicates the width of the approximate part of
the hybrid adders by the tuple of (Wapx,1, Waprx,2, Waprx.3.
Wapx,muL). As the results in Table VII demonstrate, among
the approximate FAs, the highest accuracy belongs to the case
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Fig. 13.  Output images of JPEG compression when utilizing different FAs
for DCT (second configuration).

of RCPFA-I whose MSSIM values are close to those of the
exact FA. More specifically, utilizing RCPFA-I, reduces the
MSSIM value by, on average, 5% compared to that of using
the exact FA.

Also, the combination of the RCPFA-II and RCPFA-III
leads to the higher MSSIMs compared to that of employing
either RCPFA-II or RCPFA-III. When the combination of
RCPFA-II and RCPFA-III is employed, the MSSIM of the
approximate JPEG, on average, is about 15% smaller than that
of the exact JPEG. However, in the cases of using RCPFA-II
and RCPFA-III, the MSSIM of the approximate JPEG,
on average, is about 16% and 36%, respectively, smaller than
that of the exact JPEG. Finally, the MSSIM values in the
case of the other approximate FAs are significantly smaller
than those of the RCPFAs revealing the better efficacy of the
proposed FAs for DSP applications. For example, the best
MSSIM for other approximate adders belongs to TGA-II
whose MSSIM is, on average, 47% lower than that of the
exact JPEG.

For a better comparison, the output images in the cases
of exact FA, RCPFA-I, RCPFA-II, AMA-I, TGA-I, and LOA
in the second configuration [i.e., (4, 6, 10, 24)] are shown
in Fig. 13. To demonstrate the DCT energy reduction due
to employing the approximate FAs, Fig. 14(a) indicates the
achieved energy saving for RCPFAs, AMA-I, TGA-I, and
LOA in the three considered configurations. The energy saving
of RCPFA-II in the third configuration [i.e., (6, 9, 16, 30)]
was 60% which is the highest energy saving. The energy
consumption of the DCT has been extracted in the similar
way of extracting the energy consumption of the FIR.

The energy saving has been achieved at the cost of some
quality loss. To address the quality loss issue, again we defined
a FoC as

energynorm. X delay,o.m X areanorm.
MSSIM '

The energy, delay, and area in (21) are normalized to the
corresponding values in the case of using the exact FA. The
FoCs of DCT for different approximate FAs are depicted
in Fig. 14(b). The FoC of the DCT realized using the exact

FoC = (22)
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TABLE VII
MINIMUM, AVERAGE, AND MAXIMUM MSSIM OF THE JPEG COMPRESSION UNDER THREE DIFFERENT CONFIGURATIONS FOR THE DCT UNIT

Config. Exact| RCPFA-I|RCPFA-II|RCPFA-III|RCPFA-II&-II1| ETA-I | AMA-I |AMA-II|AMA-III[ AMA-IV | TGA-I |[TGA-II [ AXA-I | LOA [Trunc.
Min | 0.90 | 0.88 0.77 0.48 0.82 0.00 [ 043 [ 0.02 0.00 0.00 038 | 038 [ 0.00 | 041 [ 0.00
(3,5,7,21) |AVG| 0.95 0.94 0.88 0.68 0.90 0.04 | 0.65 [ 0.07 0.01 0.00 0.61 0.59 | 0.00 | 0.63 [ 0.00
MAX]| 0.98 0.97 0.92 0.80 0.94 0.11 [ 078 [ 0.17 0.07 0.01 0.76 | 0.75 | 0.01 [ 0.78 | 0.01
Min | 0.90 | 0.82 0.66 0.37 0.62 0.00 [ 0.20 [ 0.00 0.00 0.00 0.12 [ 0.28 [ 0.00 | 0.18 [ 0.00
(4,6,10,24)| AVG| 0.95 0.91 0.81 0.60 0.80 0.00 [ 0.51 0.00 0.01 0.00 041 049 | 0.00 | 0.39 [ 0.00
MAX]| 0.98 0.95 0.87 0.74 0.88 0.02 [ 0.68 | 0.01 0.01 0.02 0.62 | 0.66 [ 0.00 [ 0.58 [ 0.00
Min | 0.90 | 0.70 0.45 0.29 0.45 0.01 | 0.03 [ 0.00 0.00 0.00 0.04 [ 0.15 [ 0.00 | 0.13 [ 0.00
(6,9,16,30)| AVG| 0.95 0.85 0.68 0.50 0.69 0.04 [ 0.18 [ 0.00 0.00 0.00 0.21 0.34 | 0.00 | 0.17 [ 0.00
MAX] 0.98 0.92 0.80 0.67 0.81 0.05 0.38 0.01 0.01 0.00 0.36 0.53 0.00 0.33 0.00
7 of the proposed structure in DSP applications. The results
o [ “RCPFAL :I;(C;;FIA'H :ESZFA'HI = showed that using the proposed approximate FAs provided, on
e average, 60% and 39% energy savings in DCT of the JPEG
En and FIR filter applications, respectively.
£ %0 [
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